Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Biol Chem ; 299(3): 102990, 2023 03.
Article in English | MEDLINE | ID: covidwho-2235815

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.


Subject(s)
COVID-19 , Interferon Type I , Animals , Humans , SARS-CoV-2 , Histone Deacetylases/genetics , Interferon Type I/pharmacology , Peptide Hydrolases , Mammals , Endoribonucleases , Trans-Activators
2.
Int J Biol Sci ; 18(12): 4648-4657, 2022.
Article in English | MEDLINE | ID: covidwho-1954693

ABSTRACT

Asymptomatic infection with SARS-CoV-2 is a major concern in the control of the COVID-19 pandemic. Many questions concerning asymptomatic infection remain to be answered, for example, what are the differences in infectivity and the immune response between asymptomatic and symptomatic infections? In this study, based on a cohort established by the Wuchang District Health Bureau of Wuhan in the early stage of the COVID-19 pandemic in Wuhan in 2019, we conducted a comprehensive analysis of the clinical, virological, immunological, and epidemiological data of asymptomatic infections. The major findings of this study included: 1) the asymptomatic cohort enrolled this study exhibited low-grade but recurrent activity of viral replication; 2) despite a lack of overt clinical symptoms, asymptomatic infections exhibited ongoing innate and adaptive immune responses; 3) however, the immune response from asymptomatic infections was not activated adequately, which may lead to delayed viral clearance. Given the fragile equilibrium between viral infection and host immunity, and the delayed viral clearance in asymptomatic individuals, close viral monitoring should be scheduled, and therapeutic intervention may be needed.


Subject(s)
COVID-19 , Asymptomatic Infections , Humans , Immunity , Immunity, Innate , Pandemics , SARS-CoV-2
3.
Virol Sin ; 36(5): 869-878, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1117772

ABSTRACT

Understanding the persistence of antibody in convalescent COVID-19 patients may help to answer the current major concerns such as the risk of reinfection, the protection period of vaccination and the possibility of building an active herd immunity. This retrospective cohort study included 172 COVID-19 patients who were hospitalized in Wuhan. A total of 404 serum samples were obtained over six months from hospitalization to convalescence. Antibodies in the specimens were quantitatively analyzed by the capture chemiluminescence immunoassays (CLIA). All patients were positive for the anti-SARS-CoV-2 IgM/IgG at the onset of COVID-19 symptoms, and the IgG antibody persisted in all the patients during the convalescence. However, only approximately 25% of patients can detect the IgM antibodies, IgM against N protein (N-IgM) and receptor binding domain of S protein (RBD-IgM) at the 27th week. The titers of IgM, N-IgM and RBD-IgM reduced to 16.7%, 17.6% and 15.2% of their peak values respectively. In contrast, the titers of IgG, N-IgG and RBD-IgG peaked at 4-5th week and reduced to 85.9%, 62.6% and 87.2% of their peak values respectively at the end of observation. Dynamic behavior of antibodies and their correlation in age, gender and severity groups were investigated. In general, the COVID-19 antibody was sustained at high levels for over six months in most of the convalescent patients. Only a few patients with antibody reducing to an undetectable level which needs further attention. The humoral immune response against SARS-CoV-2 infection in COVID-19 patients exhibits a typical dynamic of acquired immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Convalescence , Hospitalization , Humans , Immunity, Humoral , Retrospective Studies , Spike Glycoprotein, Coronavirus
4.
Anal Chem ; 92(15): 10196-10209, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-612210

ABSTRACT

Molecular diagnosis of COVID-19 primarily relies on the detection of RNA of the SARS-CoV-2 virus, the causative infectious agent of the pandemic. Reverse transcription polymerase chain reaction (RT-PCR) enables sensitive detection of specific sequences of genes that encode the RNA dependent RNA polymerase (RdRP), nucleocapsid (N), envelope (E), and spike (S) proteins of the virus. Although RT-PCR tests have been widely used and many alternative assays have been developed, the current testing capacity and availability cannot meet the unprecedented global demands for rapid, reliable, and widely accessible molecular diagnosis. Challenges remain throughout the entire analytical process, from the collection and treatment of specimens to the amplification and detection of viral RNA and the validation of clinical sensitivity and specificity. We highlight the main issues surrounding molecular diagnosis of COVID-19, including false negatives from the detection of viral RNA, temporal variations of viral loads, selection and treatment of specimens, and limiting factors in detecting viral proteins. We discuss critical research needs, such as improvements in RT-PCR, development of alternative nucleic acid amplification techniques, incorporating CRISPR technology for point-of-care (POC) applications, validation of POC tests, and sequencing of viral RNA and its mutations. Improved assays are also needed for environmental surveillance or wastewater-based epidemiology, which gauges infection on the community level through analyses of viral components in the community's wastewater. Public health surveillance benefits from large-scale analyses of antibodies in serum, although the current serological tests do not quantify neutralizing antibodies. Further advances in analytical technology and research through multidisciplinary collaboration will contribute to the development of mitigation strategies, therapeutics, and vaccines. Lessons learned from molecular diagnosis of COVID-19 are valuable for better preparedness in response to other infectious diseases.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Betacoronavirus/chemistry , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques , False Negative Reactions , High-Throughput Nucleotide Sequencing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pandemics , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Specimen Handling/methods , Viral Load , Viral Proteins/analysis , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL